
measComp

unknown

2023-July-31

CONTENTS

1 Required Modules 3

2 Table of Contents 5
2.1 Overview . 5
2.2 Driver for Multi-Function Devices . 5

2.2.1 Introduction . 6
2.2.2 Supported models . 7
2.2.3 Configuration . 29
2.2.4 Databases . 30
2.2.5 Box for USB-CTR08, USB-3104, and USB-1808X . 39
2.2.6 Box for USB-2408-2AO . 41
2.2.7 Performance measurements . 41

2.3 Driver for the USB-CTR08 . 48
2.3.1 Introduction . 48
2.3.2 Configuration . 53
2.3.3 Databases . 55
2.3.4 Wiring to BCDA BC-020 LEMO Breakout Panels . 59
2.3.5 Performance measurements . 65
2.3.6 Restrictions . 65

i

ii

measComp

author
Mark Rivers, University of Chicago

This package provides EPICS drivers for the some of the USB and Ethernet I/O modules from Measurement Computing.

The software is located in the measComp github repository.

CONTENTS 1

https://github.com/epics-modules/measComp

measComp

2 CONTENTS

CHAPTER

ONE

REQUIRED MODULES

Required module Required for
EPICS base Base support
asyn Driver and device support
autosave Save/restore support
busy Busy record support
mca mca record support
scaler Scaler record support.
seq State notation language sequencer. Used in MCS mode with USB-CTR08 and for std.

The required versions of each of the above modules for a specific release of measComp can be determined from the
measComp/configure/RELEASE file.

3

measComp

4 Chapter 1. Required Modules

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Overview

This package provides EPICS drivers for the some of the USB and Ethernet I/O modules from Measurement Comput-
ing. Currently the USB-CTR04/08, and multi-function modules (E-1608, USB-1208LS, USB-1208FS, USB-1608G,
USB-1608GX-2AO, USB-1808/1808X, USB-231, USB-2408-2AO, E-TC, TC-32, USB-TEMP, USB-TEMP-AI, and
E-DIO24) are supported. The multi-function modules support analog input and/or output, temperature input (USB-
2408-2AO, USB-TEMP, USB-TEMP-AI, E-TC, TC-32), digital input/output, pulse counters (all but TC-32), and pulse
generators (USB-1608G and USB-1608GX-2AO).

Support for other modules is straightforward to add and can be done as the demand arises.

This module is supported on both Windows and Linux, 64-bit and 32-bit.

On Windows it uses the Measurement Computing “Universal Library” (UL), which is only available on Windows.

In R4-0 and later it uses the UL for Linux library from Measurement Computing for Linux drivers. This is an [open-
source library available on Github](https://github.com/mccdaq/uldaq). The Linux Universal Library API is similar to
the Windows UL API, but the functions have different names and different syntax.

UL for Windows and Linux support most current Measurement Computing models.

In versions prior to R4-0 the Linux support used the [low-level drivers from Warren Jasper](https://github.com/wjasper/
Linux_Drivers). On top of these drivers the module provides a layer that emulates the Windows UL library from
Measurement Computing. The EPICS drivers thus always use the Windows UL API and are identical on Linux and
Windows. The E-1608, E-TC, E-TC32, E-DIO24, USB-1608G-2AO, USB-CTR08, USB-TEMP, USB-TEMP-AI and
USB-31XX models are supported in these versions.

2.2 Driver for Multi-Function Devices

author
Mark Rivers, University of Chicago

Contents

• Driver for Multi-Function Devices

– Introduction

– Supported models

∗ E-1608

5

https://github.com/mccdaq/uldaq
https://github.com/wjasper/Linux_Drivers
https://github.com/wjasper/Linux_Drivers

measComp

∗ E-TC

∗ TC-32

∗ USB-1608G and USB-1608GX-2AO

∗ USB-1808 and USB-1808X

∗ USB-2408-2AO

∗ USB-TEMP and USB-TEMP-AI

∗ USB-1208LS

∗ E-DIO24

∗ USB-3100

– Configuration

– Databases

∗ Overall Device Functions

∗ Analog I/O Functions

∗ Temperature Functions

∗ Digital I/O Functions

∗ Pulse Generator Functions

∗ Waveform Digitizer Functions

∗ Waveform Generator Functions

∗ Trigger Functions

– Box for USB-CTR08, USB-3104, and USB-1808X

– Box for USB-2408-2AO

– Performance measurements

2.2.1 Introduction

This is an EPICS driver for the multi-function devices from MeasurementComputing. These multi-function devices
support support analog input, temperature input (thermocouple, RTD, thermistor, and semiconductor), analog output,
binary I/O, counters, and timers. Not all devices have all of these capabilities.

The driver is written in C++, and consists of a class that inherits from asynPortDriver, which is part of the EPICS asyn
module.

The driver is written to be general, so that it can be used with any Measurement Computing multi-function module. It
uses the introspection capabilities of their UL library to query many of the device features. However, there are some
features that cannot be queried, so the driver does require small modifications to be be used with a new model.

6 Chapter 2. Table of Contents

https://epics-controls.org/
https://www.mccdaq.com
https://epics-modules.github.io/master/asyn/R4-41/asynPortDriver.html
https://github.com/epics-modules/asyn

measComp

2.2.2 Supported models

The following models are currently supported.

E-1608

Fig. 1: Photo of E-1608

This module costs $525 and has the following features:

• 16-bit analog inputs

– 8 single-ended channels or 4 differential channels

– Programmable per-channel range: +-1V, +-2V, +-5V, +-10V

– 250 kHz total maximum input rate, i.e. 1 channel at 250 kHz, 2 channels at 125 kHz, etc.

– Internal or external trigger.

– Internal or external clock for input signals.

– Input FIFO, unlimited waveform length

• 16-bit analog outputs

2.2. Driver for Multi-Function Devices 7

measComp

– 2 channels, fixed +-10V range

– No output waveform capability

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Counter

– 1 input

– 10 MHz maximum rate, 32-bit register

More information can be found in the E-1608 product description.

The following is the main medm screen for controlling the E-1608.

E-TC

This module costs $505 and has the following features:

• Ethernet interface.

• 8 thermocouple inputs

– 8 channels with cold-junction compensation. Types J, K, T, E, R, S, B, and N.

– 4 samples/s.

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Counters

– 1 input

– 10 MHz maximum rate, 32-bit register

More information can be found in the E-TC product description.

The following is the main medm screen for controlling the E-TC.

TC-32

This module costs $1999 and has the following features:

• USB and Ethernet interfaces, either can be used.

• 32 thermocouple inputs

– 32 channels with cold-junction compensation. Types J, K, T, E, R, S, B, and N.

– 3 samples/s if reading all 32 channels, faster if reading fewer.

• Digital inputs

– 8 digital inputs, switch-selectable pullup resistor

• Digital outputs

– 32 digital inputs, switch-selectable pullup resistor

8 Chapter 2. Table of Contents

https://www.mccdaq.com/ethernet-data-acquisition/E-1608-Series
https://www.mccdaq.com/ethernet-data-acquisition/thermocouple-input/24-bit-daq/E-TC.aspx

measComp

Fig. 2: E1608_module.adl

2.2. Driver for Multi-Function Devices 9

measComp

Fig. 3: Photo of E-TC

10 Chapter 2. Table of Contents

measComp

Fig. 4: ETC_module.adl

2.2. Driver for Multi-Function Devices 11

measComp

Fig. 5: Photo of TC-32

– Each output can either be controlled by software or can be controlled by the alarm status of the correspond-
ing thermocouple. Flexible alarm configuration, i.e. hysteresis.

More information can be found in the TC-32 product description.

The following is the main medm screen for controlling the TC-32.

Fig. 6: TC32_module.adl

USB-1608G and USB-1608GX-2AO

This module costs $799 and has the following features:

• 16-bit analog inputs

– 16 single-ended channels or 8 differential channels

– Programmable per-channel range: +-1V, +-2V, +-5V, +-10V

– 500 kHz total maximum input rate, i.e. 1 channel at 500 kHz, 8 channels at 62.5 kHz, etc.

– Internal or external trigger. External trigger shared with analog outputs.

– Internal or external clock, input and output signals.

12 Chapter 2. Table of Contents

http://www.mccdaq.com/usb-ethernet-data-acquisition/temperature/usb-ethernet-24-bit-thermocouple-daq/TC-32.aspx

measComp

Fig. 7: Photo of USB-1608GX-2AO

– 4 kSample input FIFO, unlimited waveform length

• 16-bit analog outputs

– 2 channels, fixed +-10V range

– 500 kHz total maximum output rate, i.e. 1 channel at 500 kHz, 2 channels at 250 kHz

– Internal or external trigger. External trigger shared with analog inputs.

– Internal or external clock, input and output signals

– 2 kSample output FIFO, unlimited waveform length

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Pulse generator

– 1 output

– 64MHz clock, 32-bit registers

– Programmable period, width, number of pulses, polarity

• Counters

– 2 inputs

– 20 MHz maximum rate, 32-bit registers

More information can be found in the USB-1608GX-2AO product description.

The USB-1608G is very similar to the USB-1608GX-2AO except that it does not have any analog outputs and the
analog inputs are limited to 250 kHz rather than 500 kHz. More information can be found in the USB-1608G product
description.

2.2. Driver for Multi-Function Devices 13

http://www.mccdaq.com/usb-data-acquisition/USB-1608G-Series.aspx
http://www.mccdaq.com/usb-data-acquisition/USB-1608G-Series.aspx
http://www.mccdaq.com/usb-data-acquisition/USB-1608G-Series.aspx

measComp

The following is the main medm screen for controlling the USB-1608GX-2AO.

Fig. 8: 1608G_module.adl

USB-1808 and USB-1808X

These modules cost $769 and $989 and have the following features:

• 18-bit analog inputs

– 8 single-ended or differential channels

– Programmable per-channel range:+-5V, +-10V, 0-5V, 0-10V

– USB-1808: 125 kHz total maximum input rate, i.e. 1 channel at 125 kHz, 8 channels at 15.625 kHz, etc.

– USB-1808X: 500 kHz total maximum input rate, i.e. 1 channel at 500 kHz, 8 channels at 62.5 kHz, etc.

– Internal or external trigger. External trigger shared with analog outputs.

– Internal or external clock, input and output signals.

– 4 kSample input FIFO, unlimited waveform length

• 16-bit analog outputs

– 2 channels, fixed +-10V range

14 Chapter 2. Table of Contents

measComp

Fig. 9: Photo of USB-1808

2.2. Driver for Multi-Function Devices 15

measComp

– USB-1808: 250 kHz total maximum output rate, i.e. 1 channel at 250 kHz, 2 channels at 125 kHz

– USB-1808X: 1000 kHz total maximum output rate, i.e. 1 channel at 1000 kHz, 2 channels at 500 kHz

– Internal or external trigger. External trigger shared with analog inputs.

– Internal or external clock, input and output signals

– 2 kSample output FIFO, unlimited waveform length

• Digital inputs/outputs

– 4 signals, individually programmable as inputs or outputs

• Pulse generator

– 2 outputs

– 100 MHz clock, 32-bit registers

– Programmable period, width, number of pulses, polarity

• Counters

– 2 inputs

– 50 MHz maximum rate, 32-bit registers

• Quadrature encoder inputs

– 2 inputs

– 50 MHz maximum rate, 32-bit registers

More information can be found in the USB-1808 product description.

The following is the main medm screen for controlling the USB-1808.

USB-2408-2AO

This module costs $699 and has the following features:

• 24-bit analog inputs

– 16 single-ended channels or 8 differential channels

– Programmable per-channel range: 8 ranges from +-0.078V to +-10V

– Thermocouple support for 8 channels with cold-junction compensation. Types J, K, T, E, R, S, B, or N.

– 1 kHz total maximum input rate, i.e. 1 channel at 1 kHz, 8 channels at 125 Hz, etc.

– Input FIFO, unlimited waveform length

• 16-bit analog outputs

– 2 channels, fixed +-10V range

– 1000 Hz total maximum output rate, i.e. 1 channel at 1000 Hz, 2 channels at 500 Hz

– Output FIFO, unlimited waveform length

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Counters

– 2 inputs

16 Chapter 2. Table of Contents

https://www.mccdaq.com/PDFs/specs/DS-USB-1808-Series.pdf

measComp

Fig. 10: 1808_module.adl

2.2. Driver for Multi-Function Devices 17

measComp

Fig. 11: Photo of Photo of USB-2408-2AO

18 Chapter 2. Table of Contents

measComp

– 1 MHz maximum rate, 32-bit registers

More information can be found in the USB-2408-2AO product description.

The following is the main medm screen for controlling the USB-2408-2AO.

Fig. 12: 2408_module.adl

USB-TEMP and USB-TEMP-AI

The USB-TEMP costs $605 and the USB-TEMP-AI costs $795. They have the following features:

• Temperature inputs

– 8 temperature inputs on USB-TEMP, 4 on USB-TEMP-AI. These can be platinum resistance thermometers
(RTD), thermocouples, thermistors, or semiconductor sensors.

– Thermocouple support has cold-junction compensation. Types J, K, T, E, R, S, B, or N.

– 2 samples/s per channel.

• 24-bit analog inputs (USB-TEMP-AI only)

– 4 channels

– Programmable per-channel range: 4 ranges from +-1.25V to +-10V

• Digital inputs/outputs

2.2. Driver for Multi-Function Devices 19

http://www.mccdaq.com/usb-data-acquisition/USB-2408-Series.aspx

measComp

Fig. 13: Photo of Photo of USB-TEMP

20 Chapter 2. Table of Contents

measComp

– 8 signals, individually programmable as inputs or outputs

• Counters

– 1 input

– 1 MHz maximum rate, 32-bit register

More information can be found in the USB-TEMP product description.

The USB-TEMP and USB-TEMP-AI behave differently from all other Measurement Computing devices. On Windows
InstaCal is used to select the temperature sensor type (RTD, thermocouple, etc.) and the RTD wiring configuration.
Those settings are written into non-volatile memory on the device, and cannot be changed with EPICS. However, they
can be changed with EPICS on Linux, so they are exposed in the OPI screen.

The following is the main medm screen for controlling the USB-TEMP-AI.

Fig. 14: USBTEMP_AI_module.adl

2.2. Driver for Multi-Function Devices 21

https://www.mccdaq.com/usb-data-acquisition/USB-TEMP-Series.aspx

measComp

The following is the screen for configuring the temperature inputs.

Fig. 15: measCompUSBTempSetup4.adl

USB-1208LS

This module costs $129 and has the following features:

• 12-bit analog inputs

– 4 differential channels

– Programmable per-channel range: 8 ranges from +-1V to +-20V

– 50 Hz maximum sampling rate. The module has a trigger input that allows higher sampling rates, but this
is not yet supported in the EPICS driver.

• 10-bit analog outputs

– 2 channels, fixed 0 to +5V range

– 100 Hz maximum input rate

• Digital inputs/outputs

– 16 signals, programmable as inputs or outputs in groups of 8

• Counters

– 1 input

– 1 MHz maximum rate, 32-bit register

More information can be found in the USB-1208LS product description.

The USB-1208HS , USB-1208FS-Plus and USB-231 are similar devices but with higher performance. These are also
supported.

The following is the main medm screen for controlling the USB-1208LS.

22 Chapter 2. Table of Contents

http://www.mccdaq.com/usb-data-acquisition/USB-1208FS-LS-1408FS-Series.aspx
http://www.mccdaq.com/usb-data-acquisition/USB-1208FS-LS-1408FS-Series.aspx
http://www.mccdaq.com/usb-data-acquisition/USB-1208FS-LS-1408FS-Series.aspx
http://www.mccdaq.com/usb-data-acquisition/USB-230-Series.aspx

measComp

Fig. 16: Photo of USB-1208LS

2.2. Driver for Multi-Function Devices 23

measComp

Fig. 17: USB1208LS_module.adl

24 Chapter 2. Table of Contents

measComp

E-DIO24

Fig. 18: Photo of E-DIO24

This module costs $320 and has the following features:

• Digital inputs/outputs

– 24 signals, individually programmable as inputs or outputs

• Counters

– 1 input

– 10 MHz maximum rate, 32-bit register

More information can be found in the E-DIO24 product description.

The following is the main medm screen for controlling the E-DIO24.

2.2. Driver for Multi-Function Devices 25

https://www.mccdaq.com/ethernet-data-acquisition/24-channel-digital-io-daq/E-DIO24-Series

measComp

Fig. 19: EDIO24_module.adl

26 Chapter 2. Table of Contents

measComp

USB-3100

Fig. 20: Photo of USB-3101

This series of module costs from $330 (USB-3101) to $660 (USB-3106) depending on the number of channels and the
output type, and has the following features:

• 16-bit analog outputs

– 4, 8 or 16 channels, individually programmable range 0-10V or +-10V.

– Some models provide 0-20 mA current output as well as voltage output

– Some models have high-drive voltage output (+-40 mA)

– 100 Hz maximum output rate

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Counters

– 1 input

2.2. Driver for Multi-Function Devices 27

measComp

– 1 MHz maximum rate, 32-bit register

More information can be found in the USB-3100 series product description.

The following is the main medm screen for controlling the USB-3104 8-channel unit.

Fig. 21: USB3104_module.adl

The following is the medm screen for configuring the analog outputs on the USB-3104 8-channel unit.

28 Chapter 2. Table of Contents

https://www.mccdaq.com/usb-data-acquisition/USB-3100-Series.aspx

measComp

Fig. 22: USB3104_setup.adl

2.2.3 Configuration

The following lines are needed in the EPICS startup script for the multifunction driver.

Configure port driver
MultiFunctionConfig(portName, # The name to give to this asyn port driver
uniqueID, # For USB the serial number. For Ethernet the␣
→˓MAC address or IP address.
maxInputPoints, # Maximum number of input points for waveform␣
→˓digitizer
maxOutputPoints) # Maximum number of output points for waveform␣
→˓generator
MultiFunctionConfig("1608G_1", 1, 1048576, 1048576)
dbLoadTemplate("1608G.substitutions.big")

The uniqueID is a string that identifies the device to be controlled.

• For USB devices the uniqueID is the serial number, which is printed on the device (e.g. “01F6335A”).

• For Ethernet devices the uniqueID can either be the MAC address (e.g. “00:80:2F:24:53:DE”), or the IP address
(e.g. “10.54.160.63”, or the IP DNS name (e.g. “gse-e1601-1”). The MAC address, IP address or IP name can be
used for devices on the local subnet, while the IP address or IP name must be used for devices on other subnets.

The measComp module comes with example iocBoot/ directories that contain example startup scripts and example
substitutions files for each supported model.

2.2. Driver for Multi-Function Devices 29

measComp

2.2.4 Databases

The following tables list the database template files that are used with the multi-function modules.

Overall Device Functions

These are the records defined in measCompDevice.template. This database is loaded once for each module.

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

$(P)ModelNamestringin asyn-
Octe-
tRead

MODEL_NAMEThe model name of this device, e.g. “USB-1808X”.

$(P)ModelNumberlongin asynInt32 MODEL_NUMBERThe model number of this device, e.g. 318.
$(P)FirmwareVersionstringin asyn-

Octe-
tRead

FIRMWARE_VERSIONThe firmware version, e.g. “1.03”.

$(P)UniqueIDstringin asyn-
Octe-
tRead

UNIQUE_IDThe unique ID of this device, e.g. “02151405”

$(P)ULVersionstringin asyn-
Octe-
tRead

UL_VERSIONThe version of the UL library on Linux or Windows, e.g. “1.2.0”.

$(P)DriverVersionstringin asyn-
Octe-
tRead

DRIVER_VERSIONThe version of the EPICS driver, e.g. “4.3”.

$(P)PollTimeMSai asyn-
Float64

POLL_TIME_MSThe actual time for the last poll cycle in ms.

$(P)PollSleepMSao asyn-
Float64

POLL_SLEEP_MSThe time to sleep at the end of each poll cycle in ms.

$(P)LastErrorMessagewave-
form

asyn-
Octe-
tRead

LAST_ERROR_MESSAGEThe last error message from the driver.

The medm sub-screen that displays these records. The main screen for every module contains a subscreen like this.

Fig. 23: measCompDevice.adl

30 Chapter 2. Table of Contents

measComp

Analog I/O Functions

These are the records defined in measCompAnalogIn.template. This database is loaded once for each analog input
channel

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R) ai asynInt32 ANA-
LOG_IN_VALUE

Analog input value. This is converted from the 16-bit unsigned inte-
ger device units from the driver to engineering units using the EGUL
and EGUF fields. This value is polled in the driver at the polling fre-
quency set by PollSleepMS. The asynInt32Average device support
is used, so that the ai value is the average of all the readings from
the poller since the last time the record processed. For example,
if the poller is running at 100 Hz and the ai record SCAN field is
“0.2 seconds” then 20 values will be averaged each time the record
processes. If SCAN=I/O Intr then the device support will average
the number of values specified in the SVAL field of the record. If
SVAL<=1 then the record will processes on each callback, so there
is no averaging.

(P)(R)Rangembbo asynInt32 ANA-
LOG_IN_RANGE

Input range for this analog input channel. Choices are determined at
run time based on the model in use.

(P)(R)Typembbo asynInt32 ANA-
LOG_IN_TYPE

Input type (e.g. “Volts”, “TC deg”, etc.) for this analog input chan-
nel. Choices are determined at run time based on the model in use.

The following is the medm screen for controlling the analog input records for the USB-1608GX-2AO. Note that the
engineering units limits (EGUL and EGUF) do not have to be in volts, they can be in any units such as “percent”,
“degrees”, etc.

Fig. 24: measCompAiSetup.adl

These are the records defined in measCompAnalogOut.template. This database is loaded once for each analog output
channel

2.2. Driver for Multi-Function Devices 31

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R) ai asynInt32 ANA-
LOG_OUT_VALUE

Analog output value. This is converted from engineering units to the
16-bit unsigned integer device units for the driver using the EGUL
and EGUF fields.

(P)(R)Rangembbo asynInt32 ANA-
LOG_OUT_RANGE

Output range for this analog output channel. Choices are determined
at run time based on the model in use.

(P)(R)Returnai asynInt32 ANA-
LOG_OUT_VALUE

Analog output value to return to at the end of a pulse. This is con-
verted from engineering units to the 16-bit unsigned integer device
units for the driver using the EGUL and EGUF fields.

(P)(R)Pulsebo N.A. N.A. Choices are “Normal” and “Pulse”. In Normal mode the Return
record is ignored. In Pulse mode the $(P)($R) output is written to
to hardware, followed immediately by writing the (P)(R)Return
value.

(P)(R)TweakValao N.A. N.A. The amount by which to tweak the out when the Tweak record is
processed.

(P)(R)TweakUpcalcout N.A. N.A. Tweaks the output up by TweakVal.
(P)(R)TweakDowncalcout N.A. N.A. Tweaks the output down by TweakVal.

The following is the medm screen for controlling the analog output records for the USB-1608GX-2AO. Note that the
engineering units limits (EGUL and EGUF) do not have to be in volts, they can be in any units such as “percent”,
“degrees”, etc. The drive limits can be more restrictive than the full +-10V output range of the analog outputs.

Fig. 25: measCompAoSetup.adl

Temperature Functions

These are the records defined in measCompTemperatureIn.template. This database is loaded once for each temperature
input channel.

32 Chapter 2. Table of Contents

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R) ai asyn-
Float64

TEM-
PERA-
TURE_IN_VALUE

Temperature input value. This field should be periodically scanned,
since it is not currently polled in the driver, so I/O Intr scanning
cannot be used.

(P)(R)Scalembbo asynInt32 TEM-
PERA-
TURE_SCALE

Temperature scale (units) for this temperature input channel.
Choices are “Celsius” (0), “Fahrenheit” (1), “Kelvin” (2), “Volts”
(4), and “Noscale” (5).

(P)(R)TCTypembbo asynInt32 THER-
MO-
COU-
PLE_TYPE

Thermocouple type. Choices are “Type J” (1), “Type K” (2), “Type
T” (3), “Type 4” (4), “Type R” (5), “Type S” (6), “Type B” (7), “Type
N” (8)

(P)(R)Filtermbbo asynInt32 TEM-
PERA-
TURE_FILTER

Temperature filter. Choices are “Filter” (0) and “No filter” (0x400)

The following is the main medm screen for configuring the analog/temperature inputs on the USB-2408-2AO.

Fig. 26: measCompTemperatureSetup.adl

2.2. Driver for Multi-Function Devices 33

measComp

Digital I/O Functions

These are the records defined in the following files:

• measCompBinaryIn.template. This database is loaded once for each binary I/O bit.

• measCompLongIn.template. This database is loaded once for each binary I/O register.

• measCompBinaryOut.template. This database is loaded once for each binary I/O bit.

• measCompLongOut.template. This database is loaded once for each binary I/O register.

• measCompBinaryDir.template. This database is loaded once for each binary I/O bit.

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R) bi asyn-
UInt32Digital

DIGI-
TAL_INPUT

Digital input value. The MASK parameter in the INP link defines
which bit is used. The binary inputs are polled by the driver poller
thread, so these records should have SCAN=”I/O Intr”.

(P)(R) longin asyn-
UInt32Digital

DIGI-
TAL_INPUT

Digital input value as a word, rather than individual bits. The MASK
parameter in the INP link defines which bits are used. The binary
inputs are polled by the driver poller thread, so this record should
have SCAN=”I/O Intr”.

(P)(R) bo asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value. The MASK parameter in the INP link defines
which bit is used.

(P)(R)_RBVbi asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value readback. The MASK parameter in the INP link
defines which bit is used.

(P)(R) longout asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value as a word, rather than individual bits. The
MASK parameter in the INP link defines which bits are used.

(P)(R)_RBVlongin asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value readback as a word, rather than individual bits.
The MASK parameter in the INP link defines which bits are used.

(P)(R) bo asyn-
UInt32Digital

DIGI-
TAL_DIRECTION

Direction of this I/O line, “In” (0) or “Out” (1). The MASK param-
eter in the INP link defines which bit is used.

Pulse Generator Functions

Note: These are called “timers” in Measurement Computing’s documentation.

These are the records defined in measCompPulseGen.template. This database is loaded once for each pulse generator.

34 Chapter 2. Table of Contents

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)Runbo asyn-
UInt32

PULSE_RUN“Run” (1) starts the pulse generator, “Stop” (0) stops the pulse gen-
erator. Note that ideally this record should go back to 0 when the
pulse generator is done, if it is outputting a finite number of pulses
(see Count record). But unfortunately the Measurement Computing
library does not have a way to query the status of the timer to see if
it is done, so this is not possible.

(P)(R)Periodao asyn-
Float64

PULSE_PERIODPulse period, in seconds. The time between pulses can be defined
either with the Period or with the Frequency; whenever one record
is changed the other is updated with the new calculated value.

(P)(R)Frequencyao N.A. N.A. Pulse frequency, in seconds. The Frequency calculates a new value
of the Period, and sends the period value to the driver.

(P)(R)Widthao asyn-
Float64

PULSE_WIDTHPulse width, in seconds. The allowed range is 15.625 ns to (Period-
15.625 ns).

(P)(R)Delayao asyn-
Float64

PULSE_DELAYInitial pulse delay in seconds after Run is set to 1.

(P)(R)Countlongout asynInt32 PULSE_COUNTNumber of pulses to output. If the Count is 0 then the pulse generator
runs continuously until Run is set to 0.

(P)(R)IdleStatebo asynInt32 PULSE_IDLE_STATEThe idle state of the pulse output line, “Low” (0) or “High” (1). This
determines the polarity of the pulse, i.e. positive going or negative
going.

Waveform Digitizer Functions

These records are defined in the following files: - measCompWaveformDig.template. This database is loaded once per
module. - measCompWaveformDigN.template. This database is loaded for each digitizer input channel.

2.2. Driver for Multi-Function Devices 35

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)NumPointslongout asynInt32 WAVEDIG_NUM_POINTSNumber of points to digitize. This cannot be more than the value of
maxInputPoints that was specified in USB1608GConfig.

(P)(R)FirstChanmbbo asynInt32 WAVEDIG_FIRST_CHANFirst channel to digitize. “1” (0) to “8” (7). The database currently
assumes differential inputs, so only 8 inputs are available, though
this can easily be extended to 16.

(P)(R)NumChansmbbo asynInt32 WAVEDIG_NUM_CHANSNumber of channels to digitize. “1” (0) to “8” (7). The maximum
valid number is 8-FirstChan+1. The database currently assumes dif-
ferential inputs, so only 8 inputs are available, though this can easily
be extended to 16.

(P)(R)TimeWFwave-
form

asyn-
Float32Array

WAVEDIG_TIME_WFTimebase waveform. These values are calculated when Dwell or
NumPoints are changed. It is typically used as the X-axis in plots.

(P)(R)CurrentPointlongin asynInt32 WAVEDIG_CURRENT_POINTThe current point being collected. This does not always increment
by 1 because the device can transfer data in blocks.

(P)(R)Dwellao asyn-
Float64

WAVEDIG_DWELLThe time per point in seconds. The minimum time is 2 microseconds
times NumChans.

(P)(R)TotalTimeai asyn-
Float64

WAVEDIG_TOTAL_TIMEThe total time to digitize NumChans*NumPoints.

(P)(R)ExtTriggerbo asynInt32 WAVEDIG_EXT_TRIGGERThe trigger source, “Internal” (0) or “External” (1).
(P)(R)ExtClockbo asynInt32 WAVEDIG_EXT_CLOCKThe clock source, “Internal” (0) or “External” (1). If External is

used then the Dwell record does not control the digitization rate, it
is controlled by the external clock. However Dwell should be set
to approximately the correct value if possible, because that controls
what type of data transfers the device uses.

(P)(R)Continuousbo asynInt32 WAVEDIG_CONTINUOUSValues are “One-shot” (0) or “Continuous” (1). This controls
whether the device stops when acquisition is complete, or immedi-
ately begins another acquisition. Typically “One-shot” is used, be-
cause the driver is currently not double-buffered, so data could be
overwritten before the driver has a chance to read the data. One ex-
ception is when using Retrigger=Enable and TriggerCount less than
NumPoints. In that case each trigger will only collect TriggerCount
samples, and one wants to use Continuous so that it collects the next
TriggerCount samples on the next trigger input.

(P)(R)AutoRestartbo asynInt32 WAVEDIG_AUTO_RESTARTValues are “Disable” (0) and “Enable” (1). This controls whether
the driver automatically starts another acquire when the previous one
completes. This is different from Continuous mode described above,
because this is a software restart that only happens after the driver
has read the buffer from the previous acquisition.

(P)(R)Retriggerbo asynInt32 WAVEDIG_RETRIGGERValues are “Disable” (0) and “Enable” (1). This controls whether
the device rearms the trigger input after a trigger is received.

(P)(R)TriggerCountlongout asynInt32 WAVEDIG_TRIGGER_COUNTThis controls how many samples are collected on each trigger input.
0 means collect NumPoint samples. If TriggerCount is less than
NumPoints, Retrigger=Enable and Continuous=Enable then each
time a trigger is received TriggerCount samples will be collected.

(P)(R)BurstModebo asynInt32 WAVEDIG_BURST_MODEValues are “Disable” (0) and “Enable” (1). This controls whether the
device digitizes all NumChans channels as quickly as possible dur-
ing each sample, or whether it digitizes successive channels at evenly
spaced time intevals during the Dwell time. Enabling BurstMode
means that all channels are digitized 2 microseconds apart. This can
reduce the accuracy if the channels have very different voltages be-
cause of the settling time and slew rate limitations of the system.

(P)(R)Runbusy asynInt32 WAVEDIG_RUNValues are “Stop” (0) and “Run” (1). This starts and stops the wave-
form digitizer.

(P)(R)ReadWFbusy asynInt32 WAVEDIG_READ_WFValues are “Done” (0) and “Read” (1). This reads the waveform
data from the device buffers into the waveform records. Note that
the driver always reads device when acquisition stops, so for quick
acquisitions this record can be Passive. To see partial data during
long acquisitions this record can be periodically processed.

(P)(R)VoltWFwave-
form

asyn-
Float64Array

WAVEDIG_VOLT_WFThis waveform record contains the digitizer waveform data for chan-
nel N. This record has scan=I/O Intr, and it will process whenever
acquisition completes, or whenever the ReadWF record above pro-
cesses. The data are in volts.

36 Chapter 2. Table of Contents

measComp

This is a plot of a digitized waveform captured of someone speaking into a microphone.

Fig. 27: Waveform digitizer plot

Waveform Generator Functions

These records are defined in the following files: - measCompWaveformGen.template. This database is loaded once per
module. - measCompWaveformGenN.template. This database is loaded for each waveform generator output channel.

2.2. Driver for Multi-Function Devices 37

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)NumPointslongin asynInt32 WAVE-
GEN_NUM_POINTS

Number of points output waveform. The value of this record is equal
to UserNumPoints if user-defined waveforms are selected, or Int-
NumPoints if internal predefined waveforms are selected.

(P)(R)UserNumPointslongout asynInt32 WAVE-
GEN_USER_NUM_POINTS

Number of points in user-defined output waveforms. This cannot
be more than the value of maxOutputPoints that was specified in
USB1608GConfig.

(P)(R)IntNumPointslongout asynInt32 WAVE-
GEN_INT_NUM_POINTS

Number of points in internal predefined output waveforms. This can-
not be more than the value of maxOutputPoints that was specified in
USB1608GConfig.

(P)(R)UserTimeWFwave-
form

asyn-
Float32Array

WAVEDIG_USER_TIME_WFTimebase waveform for user-defined waveforms. These values are
calculated when UserDwell or UserNumPoints are changed. It is
typically used as the X-axis in plots.

(P)(R)IntTimeWFwave-
form

asyn-
Float32Array

WAVE-
GEN_INT_TIME_WF

Timebase waveform for internal predefined waveforms. These val-
ues are calculated when IntDwell or IntNumPoints are changed. It
is typically used as the X-axis in plots.

(P)(R)CurrentPointlongin asynInt32 WAVE-
GEN_CURRENT_POINT

The current point being output. This does not always increment by
1 because the device can transfer data in blocks.

(P)(R)Frequencyai asyn-
Float64

WAVE-
GEN_FREQUENCY

The output frequency (waveforms/second). The value of this record
is equal to UserFrequency if user-defined waveforms are selected, or
IntFrequency if internal predefined waveforms are selected.

(P)(R)Dwellai asyn-
Float64

WAVE-
GEN_DWELL

The output dwell time or period (seconds/sample). The value of this
record is equal to UserDwell if user-defined waveforms are selected,
or IntDwell if internal predefined waveforms are selected.

(P)(R)UserDwellao asyn-
Float64

WAVE-
GEN_USER_DWELL

The output dwell time or period (seconds/sample) for user-defined
waveforms. This record is automatically changed if UserFrequency
is modified.

(P)(R)IntDwellao asyn-
Float64

WAVE-
GEN_INT_DWELL

The output dwell time or period (seconds/sample) for internal pre-
defined waveforms. This record is automatically changed if IntFre-
quency is modified.

(P)(R)UserFrequencyao N.A. N.A. The output frequency (waveforms/second) for user-defined wave-
forms. This record computes UserDwell and writes to that record.
This record is automatically changed if UserDwell is modified.

(P)(R)IntFrequencyao N.A. N.A. The output frequency (waveforms/second) for internal predefined
waveforms. This record computes IntDwell and writes to that record.
This record is automatically changed if IntDwell is modified.

(P)(R)TotalTimeai asyn-
Float64

WAVE-
GEN_TOTAL_TIME

The total time to output the waveforms. This is Dwell*NumPoints.

(P)(R)ExtTriggerbo asynInt32 WAVE-
GEN_EXT_TRIGGER

The trigger source, “Internal” (0) or “External” (1).

(P)(R)ExtClockbo asynInt32 WAVE-
GEN_EXT_CLOCK

The clock source, “Internal” (0) or “External” (1). If External is used
then the Dwell record does not control the output rate, it is controlled
by the external clock. However Dwell should be set to approximately
the correct value if possible, because that controls what type of data
transfers the device uses.

(P)(R)Continuousbo asynInt32 WAVE-
GEN_CONTINUOUS

Values are “One-shot” (0) or “Continuous” (1). This controls
whether the device stops when the output waveform is complete, or
immediately begins again at the start of the waveform.

(P)(R)Retriggerbo asynInt32 WAVE-
GEN_RETRIGGER

Values are “Disable” (0) and “Enable” (1). This controls whether
the device rearms the trigger input after a trigger is received.

(P)(R)TriggerCountlongout asynInt32 WAVE-
GEN_TRIGGER_COUNT

This controls how many values are output on each trigger input.
0 means output NumPoints samples. If TriggerCount is less than
NumPoints, Retrigger=Enable and Continuous=Enable then each
time a trigger is received TriggerCount samples will be output.

(P)(R)Runbusy asynInt32 WAVE-
GEN_RUN

Values are “Stop” (0) and “Run” (1). This starts and stops the wave-
form generator.

(P)(R)UserWFwave-
form

asyn-
Float32Array

WAVE-
GEN_USER_WF

This waveform record contains the user-defined waveform generator
data for channel N. The data are in volts. These data are typically
generated by an EPICS Channel Access client.

(P)(R)InternalWFwave-
form

asyn-
Float32Array

WAVE-
GEN_INT_WF

This waveform record contains the internal predefined waveform
generator data for channel N. The data are in volts.

(P)(R)Enablebo asynInt32 WAVE-
GEN_ENABLE

Values are “Disable” and “Enable”. Controls whether channel N
output is enabled.

(P)(R)Typembbo asynInt32 WAVE-
GEN_WAVE_TYPE

Controls the waveform type on channel N. Values are “User-defined”
and “Sin wave”, “Square wave”, “Sawtooth”, “Pulse”, or “Random”.
Note that if any channel is “User-defined” then all channels must be.
Note that all internally predefined waveforms are symmetric about
0 volts. To output unipolar signals the Offset should be set to +-
Amplitude/2.

(P)(R)PulseWidthao asyn-
Float64

WAVE-
GEN_PULSE_WIDTH

Controls the pulse width in seconds if Type is “Pulse”.

(P)(R)Amplitudeao asyn-
Float64

WAVE-
GEN_AMPLITUDE

Controls the amplitude of the waveform. For internally predefined
waveforms this directly controls the peak-to-peak amplitude in volts.
For user-defined waveforms this is a scale factor that multiplies the
values in the waveform, i.e. 1.0 outputs the user-defined waveform
unchanged, 2.0 increases the amplitide by 2, etc. For both inter-
nal and used-defined waveforms changing the sign of the Amplitude
controls the polarity of the signal.

(P)(R)Offsetao asyn-
Float64

WAVE-
GEN_OFFSET

Controls the offset of the waveform in volts. For user-defined wave-
forms, this value is added to the waveform, i.e. 0.0 outputs the user-
defined waveform unchanged, 1.0 adds 1 volt, etc.

38 Chapter 2. Table of Contents

measComp

Fig. 28: Plot of an internal predefined waveform (sin wave)

Trigger Functions

These records are defined in measCompTrigger.template. This database is loaded once per module.

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)Modembbo asynInt32 TRIG-
GER_MODE

The mode of the external trigger input. Choices are “Positive edge”,
“Negative edge”, “High”, and “Low”.

2.2.5 Box for USB-CTR08, USB-3104, and USB-1808X

The following photo is a box we built to house the USB-CTR08, USB-3104, and USB-1808X and provide BNC I/O
connections.

2.2. Driver for Multi-Function Devices 39

measComp

Fig. 29: Plot of a user-defined waveform (sum of sin and cos waves)

Fig. 30: GSECARS designed box for USB-CTR08, USB-3104, and USB-1808X

40 Chapter 2. Table of Contents

measComp

2.2.6 Box for USB-2408-2AO

The following photos show a box we built to house the USB-2408-2AO and provide I/O connections.

This is the top view.

Fig. 31: Top view of USB-2408-2AO box

These are the side views.

2.2.7 Performance measurements

The following summarizes a simple test of the precision and accuracy of the analog outputs and analog inputs of the
USB-1608GX-2AO. The test configuration was with Analog Output 0 connected to Analog Input 0, and also to a
Keithley 2700 digital multimeter. The Keithley is a 6.5 digit (22 bit) device, so it can be used to measure the accuracy
of the USB-1608GX-2AO analog output, and provide the “true” value to measure the accuracy of the analog input.
The 1608GX analog inputs records and the Keithley input had SCAN=0.1 second, so new readings were being made
at 10Hz. The following IDL test program was used to drive the analog output from -10V to +10V in 0.1V steps. 10
readings were made of the 1608GX analog inputs, and one reading of the Keithley at each voltage step. These tests
were done with the +-10V range of the analog outputs and analog inputs. Since these are 16-bit devices, one bit is
20V/65536 = 0.000305 volts.

2.2. Driver for Multi-Function Devices 41

measComp

Fig. 32: Side views of USB-2408-2AO box

42 Chapter 2. Table of Contents

measComp

pro test_analog_performance_1608, ao=ao, ai=ai, min_volts=min_volts, max_volts=max_
→˓volts, $

step_volts=step_volts, num_samples=num_samples,␣
→˓delay=delay, $

keithley=keithley, results

if (n_elements(ao) eq 0) then ao = '1608G:Ao1'
if (n_elements(ai) eq 0) then ai = '1608G:Ai1'
if (n_elements(min_volts) eq 0) then min_volts = -10.0
if (n_elements(max_volts) eq 0) then max_volts = 10.0
if (n_elements(step_volts) eq 0) then step_volts = 0.1
if (n_elements(num_samples) eq 0) then num_samples = 10
if (n_elements(delay) eq 0) then delay = 0.1
if (n_elements(keithley) eq 0) then keithley = '13LAB:DMM2Dmm_raw.VAL'

output = min_volts
samples = dblarr(num_samples)
num_points = ((max_volts - min_volts) / step_volts + 0.5) + 1
results = dblarr(4, num_points)
for i=0, num_points-1 do begin
output = min_volts + i*step_volts
t = caput(ao, output)
wait, 2*delay
for j=0, num_samples-1 do begin
wait, delay
t = caget(ai, temp)
samples[j] = temp

endfor
m = moment(samples)
results[0,i] = output
results[1,i] = m[0]
results[2,i] = sqrt(m[1])
t = caget(keithley, temp)
results[3,i] = temp
print, results[0,i], results[1,i], results[2,i], results[3,i]

endfor
end

The following plot shows the difference of the nominal USB-1608GX-2AO analog output voltage from the Keithley
2700 reading. The mean error is 0.000312V, or just over 1 bit. The RMS error is 0.000203V, or less than 1 bit.

The following plot shows the difference of the mean of 10 readings of the 1608GX analog input voltage from the
Keithley 2700 reading. The mean error is 0.000106V, less than 1 bit. The RMS error is 0.000259V, also less than 1 bit.

The following plot shows the standard deviation of 10 readings of the 1608GX analog input voltage. The values range
from about 0.001V (~3 bits) at +-10V to less than 0.0003V (1 bit) between -2 and +2V.

The following table contains all of the results from the tests.

1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
-10.00000 -9.99930 0.00084 -10.00008
-9.90000 -9.89978 0.00130 -9.89972
-9.80000 -9.79986 0.00126 -9.79994

continues on next page

2.2. Driver for Multi-Function Devices 43

measComp

Table 1 – continued from previous page
1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
-9.70000 -9.69964 0.00134 -9.69987
-9.60000 -9.60018 0.00123 -9.59979
-9.50000 -9.50057 0.00099 -9.50003
-9.40000 -9.40020 0.00117 -9.39997
-9.30000 -9.30010 0.00080 -9.29991
-9.20000 -9.20046 0.00105 -9.20013
-9.10000 -9.09996 0.00118 -9.10009
-9.00000 -9.00035 0.00122 -8.99999
-8.90000 -8.90016 0.00079 -8.90021
-8.80000 -8.80061 0.00118 -8.80019
-8.70000 -8.69996 0.00138 -8.70007
-8.60000 -8.60044 0.00112 -8.60030
-8.50000 -8.50004 0.00098 -8.49992
-8.40000 -8.39973 0.00103 -8.39985
-8.30000 -8.29975 0.00132 -8.30009
-8.20000 -8.19965 0.00108 -8.20003
-8.10000 -8.09986 0.00115 -8.09995
-8.00000 -8.00040 0.00079 -7.99990
-7.90000 -7.90021 0.00088 -7.90012
-7.80000 -7.79950 0.00107 -7.80002
-7.70000 -7.69998 0.00099 -7.69999
-7.60000 -7.60018 0.00092 -7.60024
-7.50000 -7.49990 0.00080 -7.50011
-7.40000 -7.39986 0.00097 -7.40004
-7.30000 -7.29992 0.00101 -7.30027
-7.20000 -7.20006 0.00085 -7.20019
-7.10000 -7.09953 0.00100 -7.09982
-7.00000 -7.00060 0.00088 -7.00006
-6.90000 -6.89986 0.00097 -6.90001
-6.80000 -6.79988 0.00089 -6.79992
-6.70000 -6.69984 0.00107 -6.70013
-6.60000 -6.60017 0.00091 -6.60010
-6.50000 -6.49958 0.00088 -6.50003
-6.40000 -6.40043 0.00105 -6.40025
-6.30000 -6.30005 0.00088 -6.30020
-6.20000 -6.20008 0.00085 -6.20009
-6.10000 -6.10016 0.00076 -6.10032
-6.00000 -6.00052 0.00068 -6.00026
-5.90000 -5.89963 0.00077 -5.90018
-5.80000 -5.80050 0.00076 -5.80043
-5.70000 -5.70013 0.00066 -5.70003
-5.60000 -5.60006 0.00066 -5.59995
-5.50000 -5.50008 0.00082 -5.50021
-5.40000 -5.39989 0.00090 -5.40015
-5.30000 -5.29982 0.00081 -5.30005
-5.20000 -5.19997 0.00087 -5.20032
-5.10000 -5.10021 0.00048 -5.10025
-5.00000 -5.00011 0.00054 -5.00011
-4.90000 -4.89986 0.00071 -4.90035

continues on next page

44 Chapter 2. Table of Contents

measComp

Table 1 – continued from previous page
1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
-4.80000 -4.79976 0.00070 -4.80027
-4.70000 -4.69960 0.00082 -4.70021
-4.60000 -4.60090 0.00054 -4.60043
-4.50000 -4.50050 0.00072 -4.50035
-4.40000 -4.40012 0.00076 -4.40032
-4.30000 -4.30039 0.00045 -4.30053
-4.20000 -4.20005 0.00066 -4.20016
-4.10000 -4.10010 0.00068 -4.10010
-4.00000 -4.00012 0.00062 -4.00004
-3.90000 -3.90018 0.00060 -3.90023
-3.80000 -3.80002 0.00059 -3.80021
-3.70000 -3.70019 0.00049 -3.70009
-3.60000 -3.60027 0.00056 -3.60032
-3.50000 -3.50042 0.00063 -3.50025
-3.40000 -3.40017 0.00048 -3.40016
-3.30000 -3.30043 0.00045 -3.30042
-3.20000 -3.20034 0.00064 -3.20033
-3.10000 -3.10027 0.00066 -3.10027
-3.00000 -3.00047 0.00043 -3.00052
-2.90000 -2.90025 0.00060 -2.90045
-2.80000 -2.80021 0.00044 -2.80003
-2.70000 -2.70033 0.00038 -2.70032
-2.60000 -2.60011 0.00058 -2.60024
-2.50000 -2.50001 0.00063 -2.50010
-2.40000 -2.40015 0.00051 -2.40032
-2.30000 -2.29960 0.00043 -2.30023
-2.20000 -2.20050 0.00041 -2.20019
-2.10000 -2.10040 0.00048 -2.10041
-2.00000 -2.00012 0.00054 -2.00034
-1.90000 -1.90018 0.00044 -1.90028
-1.80000 -1.80026 0.00044 -1.80050
-1.70000 -1.70025 0.00062 -1.70042
-1.60000 -1.60043 0.00041 -1.60036
-1.50000 -1.50054 0.00044 -1.50061
-1.40000 -1.40035 0.00037 -1.40021
-1.30000 -1.30001 0.00043 -1.30015
-1.20000 -1.20006 0.00035 -1.20036
-1.10000 -1.10024 0.00048 -1.10029
-1.00000 -1.00035 0.00052 -1.00022
-0.90000 -0.90056 0.00036 -0.90046
-0.80000 -0.80052 0.00050 -0.80040
-0.70000 -0.70011 0.00041 -0.70032
-0.60000 -0.60029 0.00036 -0.60056
-0.50000 -0.50056 0.00035 -0.50050
-0.40000 -0.40031 0.00032 -0.40042
-0.30000 -0.30042 0.00030 -0.30065
-0.20000 -0.20053 0.00048 -0.20058
-0.10000 -0.10037 0.00041 -0.10050
0.00000 0.00018 0.00030 -0.00009

continues on next page

2.2. Driver for Multi-Function Devices 45

measComp

Table 1 – continued from previous page
1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
0.10000 0.09986 0.00046 0.09970
0.20000 0.19995 0.00032 0.19977
0.30000 0.30005 0.00035 0.29983
0.40000 0.39979 0.00046 0.39959
0.50000 0.49979 0.00032 0.49968
0.60000 0.60008 0.00028 0.59974
0.70000 0.69941 0.00041 0.69952
0.80000 0.79979 0.00019 0.79957
0.90000 0.89986 0.00037 0.89965
1.00000 0.99956 0.00032 0.99942
1.10000 1.09966 0.00051 1.09953
1.20000 1.19982 0.00045 1.19955
1.30000 1.29940 0.00041 1.29936
1.40000 1.39959 0.00041 1.39945
1.50000 1.49990 0.00035 1.49981
1.60000 1.59969 0.00035 1.59959
1.70000 1.69979 0.00052 1.69965
1.80000 1.80029 0.00016 1.79974
1.90000 1.89944 0.00050 1.89948
2.00000 1.99966 0.00047 1.99956
2.10000 2.09973 0.00045 2.09964
2.20000 2.19980 0.00041 2.19944
2.30000 2.29984 0.00044 2.29948
2.40000 2.40006 0.00023 2.39955
2.50000 2.49934 0.00032 2.49933
2.60000 2.59937 0.00038 2.59945
2.70000 2.69963 0.00054 2.69954
2.80000 2.79994 0.00032 2.79932
2.90000 2.90010 0.00033 2.89967
3.00000 3.00026 0.00021 2.99974
3.10000 3.09990 0.00027 3.09951
3.20000 3.19976 0.00041 3.19961
3.30000 3.30022 0.00022 3.29970
3.40000 3.39977 0.00061 3.39942
3.50000 3.49990 0.00045 3.49950
3.60000 3.59991 0.00068 3.59958
3.70000 3.69952 0.00039 3.69934
3.80000 3.79974 0.00052 3.79945
3.90000 3.89969 0.00043 3.89954
4.00000 3.99994 0.00029 3.99960
4.10000 4.09967 0.00042 4.09935
4.20000 4.19974 0.00063 4.19944
4.30000 4.29950 0.00058 4.29984
4.40000 4.39973 0.00066 4.39961
4.50000 4.50001 0.00055 4.49966
4.60000 4.60005 0.00048 4.59973
4.70000 4.70014 0.00043 4.69951
4.80000 4.79982 0.00059 4.79957
4.90000 4.89995 0.00069 4.89965

continues on next page

46 Chapter 2. Table of Contents

measComp

Table 1 – continued from previous page
1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
5.00000 4.99925 0.00059 4.99945
5.10000 5.09960 0.00066 5.09958
5.20000 5.19963 0.00087 5.19964
5.30000 5.29952 0.00072 5.29944
5.40000 5.39925 0.00084 5.39949
5.50000 5.49926 0.00059 5.49959
5.60000 5.59918 0.00065 5.59935
5.70000 5.70004 0.00073 5.69973
5.80000 5.79989 0.00081 5.79979
5.90000 5.89972 0.00087 5.89954
6.00000 6.00000 0.00076 5.99964
6.10000 6.10001 0.00038 6.09973
6.20000 6.19986 0.00047 6.19950
6.30000 6.29947 0.00071 6.29958
6.40000 6.39973 0.00077 6.39968
6.50000 6.49986 0.00068 6.49943
6.60000 6.60005 0.00091 6.59952
6.70000 6.69947 0.00085 6.69960
6.80000 6.79939 0.00065 6.79935
6.90000 6.89924 0.00083 6.89944
7.00000 6.99989 0.00074 6.99950
7.10000 7.09972 0.00091 7.09926
7.20000 7.20012 0.00074 7.19968
7.30000 7.30004 0.00073 7.29975
7.40000 7.39934 0.00061 7.39950
7.50000 7.50002 0.00073 7.49960
7.60000 7.60003 0.00074 7.59969
7.70000 7.69967 0.00101 7.69948
7.80000 7.79947 0.00089 7.79958
7.90000 7.89972 0.00094 7.89961
8.00000 8.00027 0.00083 7.99969
8.10000 8.09934 0.00090 8.09945
8.20000 8.19971 0.00095 8.19952
8.30000 8.29963 0.00112 8.29961
8.40000 8.39997 0.00073 8.39939
8.50000 8.49903 0.00089 8.49948
8.60000 8.59962 0.00080 8.59985
8.70000 8.69950 0.00109 8.69963
8.80000 8.79945 0.00084 8.79975
8.90000 8.89973 0.00111 8.89982
9.00000 8.99980 0.00083 8.99956
9.10000 9.09993 0.00071 9.09962
9.20000 9.19966 0.00098 9.19971
9.30000 9.29918 0.00090 9.29948
9.40000 9.39910 0.00097 9.39958
9.50000 9.49987 0.00106 9.49965
9.60000 9.59890 0.00102 9.59940
9.70000 9.70004 0.00110 9.69948
9.80000 9.79974 0.00105 9.79956

continues on next page

2.2. Driver for Multi-Function Devices 47

measComp

Table 1 – continued from previous page
1608GX analog output (nominal) 1608GX analog input (mean of 10 readings) Std. Dev. of 10 1608GX analog input readings Keithley 2700 reading
9.90000 9.89935 0.00112 9.89939
10.00000 9.99951 0.00058 9.99978

Suggestions and Comments to:
Mark Rivers : (rivers@cars.uchicago.edu)

2.3 Driver for the USB-CTR08

author
Mark Rivers, University of Chicago

Contents

• Driver for the USB-CTR08

– Introduction

– Configuration

– Databases

∗ Digital I/O Functions

∗ Pulse Generator Functions

∗ Scaler Record Support

∗ Multi-Channel Scaler (MCS) Support

∗ medm screens

– Wiring to BCDA BC-020 LEMO Breakout Panels

∗ Wiring table

– Performance measurements

– Restrictions

2.3.1 Introduction

This is an EPICS driver for the USB-CTR04 and USB-CTR08 counter/timer modules from MeasurementComputing.

The driver is written in C++, and consists of a class that inherits from asynPortDriver, which is part of the EPICS asyn
module.

This module has the following features:

• Digital inputs/outputs

– 8 signals, individually programmable as inputs or outputs

• Pulse generators. 4 pulse generators each with

48 Chapter 2. Table of Contents

mailto:rivers@cars.uchicago.edu
mailto:rivers@cars.uchicago.edu
https://epics-controls.org/
http://www.mccdaq.com/usb-data-acquisition/USB-CTR08.aspx
https://www.mccdaq.com
https://epics-modules.github.io/master/asyn/R4-41/asynPortDriver.html
https://github.com/epics-modules/asyn

measComp

Fig. 33: USB-1608GX-2AO analog output voltage error

2.3. Driver for the USB-CTR08 49

measComp

Fig. 34: USB-1608GX-2AO analog input voltage error

50 Chapter 2. Table of Contents

measComp

Fig. 35: USB-1608GX-2AO analog input standard deviation

2.3. Driver for the USB-CTR08 51

measComp

Fig. 36: Photo of USB-CTR08

52 Chapter 2. Table of Contents

measComp

– 48MHz clock, 32-bit registers

– Programmable period, width, number of pulses, polarity

• Counters. 8 counters (USB-CTR08) or 4 counters (USB-CTR04)

– 48 MHz maximum count rate

– Support for EPICS scaler record (similar to Joerger VSC and SIS3820)

– Support for Multi-Channel Scaler (MCS) mode, similar to SIS3820.

2.3.2 Configuration

The following lines are needed in the EPICS startup script for the USBCTR.

This line is for Linux only
cbAddBoard("USB-CTR", "")

Set the minimum sleep time to 1 ms
asynSetMinTimerPeriod(0.001)

Configure port driver
USBCTRConfig(portName, # The name to give to this asyn port driver
boardNum, # The number of this board assigned by the Measurement␣
→˓Computing Instacal program
maxTimePoints) # Maximum number of time points for MCS
USBCTRConfig("$(PORT)", 0, 2048, .01)

#asynSetTraceMask($(PORT), 0, TRACE_ERROR|TRACE_FLOW|TRACEIO_DRIVER)

dbLoadTemplate("USBCTR.substitutions")

This loads the scaler record and supporting records
dbLoadRecords("$(SCALER)/db/scaler.db", "P=USBCTR:, S=scaler1, DTYP=Asyn Scaler,␣
→˓OUT=@asyn(USBCTR), FREQ=10000000")

This database provides the support for the MCS functions
dbLoadRecords("$(MEASCOMP)/measCompApp/Db/measCompMCS.template", "P=$(PREFIX), PORT=
→˓$(PORT)")

Load either MCA or waveform records below
The number of records loaded must be the same as MAX_COUNTERS defined above

Load the MCA records
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)1, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 0), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)2, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 1), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)3, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 2), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)4, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 3), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)5, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 4), PREC=3, CHANS=$(MAX_POINTS)")

(continues on next page)

2.3. Driver for the USB-CTR08 53

measComp

(continued from previous page)

#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)6, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 5), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)7, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 6), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)8, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 7), PREC=3, CHANS=$(MAX_POINTS)")
#dbLoadRecords("$(MCA)/mcaApp/Db/simple_mca.db", "P=$(PREFIX), M=$(RNAME)9, ␣
→˓DTYP=asynMCA, INP=@asyn($(PORT) 8), PREC=3, CHANS=$(MAX_POINTS)")

This loads the waveform records
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)1, ␣
→˓INP=@asyn($(PORT) 0), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)2, ␣
→˓INP=@asyn($(PORT) 1), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)3, ␣
→˓INP=@asyn($(PORT) 2), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)4, ␣
→˓INP=@asyn($(PORT) 3), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)5, ␣
→˓INP=@asyn($(PORT) 4), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)6, ␣
→˓INP=@asyn($(PORT) 5), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)7, ␣
→˓INP=@asyn($(PORT) 6), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)8, ␣
→˓INP=@asyn($(PORT) 7), CHANS=$(MAX_POINTS)")
dbLoadRecords("$(MCA)/mcaApp/Db/SIS38XX_waveform.template", "P=$(PREFIX), R=$(RNAME)9, ␣
→˓INP=@asyn($(PORT) 8), CHANS=$(MAX_POINTS)")

asynSetTraceIOMask($(PORT),0,2)
#asynSetTraceFile("$(PORT)",0,"$(MODEL).out")

< save_restore.cmd
save_restoreSet_status_prefix($(PREFIX))
dbLoadRecords("$(AUTOSAVE)/asApp/Db/save_restoreStatus.db", "P=$(PREFIX)")

iocInit

seq(USBCTR_SNL, "P=$(PREFIX), R=$(RNAME), NUM_COUNTERS=$(MAX_COUNTERS), FIELD=$(FIELD)")
create_monitor_set("auto_settings.req",30)

The measComp module comes with an example iocBoot/iocUSBCTR directory that contains and example startup script
and example substitution files.

54 Chapter 2. Table of Contents

measComp

2.3.3 Databases

The following tables list the database template files that are used with the USB-CTR04/08.

Digital I/O Functions

These are the records defined in the following files:

• measCompBinaryIn.template. This database is loaded once for each binary I/O bit.

• measCompLongIn.template. This database is loaded once for each binary I/O register.

• measCompBinaryOut.template. This database is loaded once for each binary I/O bit.

• measCompLongOut.template. This database is loaded once for each binary I/O register.

• measCompBinaryDir.template. This database is loaded once for each binary I/O bit.

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R) bi asyn-
UInt32Digital

DIGI-
TAL_INPUT

Digital input value. The MASK parameter in the INP link defines
which bit is used. The binary inputs are polled by the driver poller
thread, so these records should have SCAN=”I/O Intr”.

(P)(R) longin asyn-
UInt32Digital

DIGI-
TAL_INPUT

Digital input value as a word, rather than individual bits. The MASK
parameter in the INP link defines which bits are used. The binary
inputs are polled by the driver poller thread, so this record should
have SCAN=”I/O Intr”.

(P)(R) bo asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value. The MASK parameter in the INP link defines
which bit is used.

(P)(R)_RBVbi asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value readback. The MASK parameter in the INP link
defines which bit is used.

(P)(R) longout asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value as a word, rather than individual bits. The
MASK parameter in the INP link defines which bits are used.

(P)(R)_RBVlongin asyn-
UInt32Digital

DIGI-
TAL_OUTPUT

Digital output value readback as a word, rather than individual bits.
The MASK parameter in the INP link defines which bits are used.

(P)(R) bo asyn-
UInt32Digital

DIGI-
TAL_DIRECTION

Direction of this I/O line, “In” (0) or “Out” (1). The MASK param-
eter in the INP link defines which bit is used.

Pulse Generator Functions

Note: These are called “timers” in Measurement Computing’s documentation.

These are the records defined in measCompPulseGen.template. This database is loaded once for each pulse generator.

2.3. Driver for the USB-CTR08 55

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)Runbo asyn-
UInt32

PULSE_RUN“Run” (1) starts the pulse generator, “Stop” (0) stops the pulse gen-
erator. Note that ideally this record should go back to 0 when the
pulse generator is done, if it is outputting a finite number of pulses
(see Count record). But unfortunately the Measurement Computing
library does not have a way to query the status of the timer to see if
it is done, so this is not possible.

(P)(R)Periodao asyn-
Float64

PULSE_PERIODPulse period, in seconds. The time between pulses can be defined
either with the Period or with the Frequency; whenever one record
is changed the other is updated with the new calculated value.

(P)(R)Frequencyao N.A. N.A. Pulse frequency, in seconds. The Frequency calculates a new value
of the Period, and sends the period value to the driver.

(P)(R)Widthao asyn-
Float64

PULSE_WIDTHPulse width, in seconds. The allowed range is 15.625 ns to (Period-
15.625 ns).

(P)(R)Delayao asyn-
Float64

PULSE_DELAYInitial pulse delay in seconds after Run is set to 1.

(P)(R)Countlongout asynInt32 PULSE_COUNTNumber of pulses to output. If the Count is 0 then the pulse generator
runs continuously until Run is set to 0.

(P)(R)IdleStatebo asynInt32 PULSE_IDLE_STATEThe idle state of the pulse output line, “Low” (0) or “High” (1). This
determines the polarity of the pulse, i.e. positive going or negative
going.

Scaler Record Support

The USBCTR driver supports the EPICS scaler record via the devScalerAsyn.c device support originally from the
synApps std module but which has been moved into the scaler module. It supports up to 8 channels. The following
wiring connections must be made in order for counters 1-8 to be stopped by counter 0, as is normally desired.

• Counter 0 Output must be connected to the Gate input on Counters 1-7.

The .PR1 preset is performed in hardware via the Counter 0 Output and Counters 1-7 gates. Counters 1-7 can also be set
as preset counters, and the scaler record will stop counting when any of these preset values (.PR2-.PR8) are exceeded.
However, unlike the .PR1 preset, these presets are done in software in the driver polling routine. The device sends
readings at 100 Hz, and whenever a preset is exceeded counting is stopped. Each of the counters will have counted for
exactly the same amount of time, but the actual count time could be up to 0.01 seconds longer than the time when the
preset was reached.

Counter 0 is normally used as the preset counter, and is connected to a fixed frequency source. Any of the on-board
pulse generators can be used to provide this frequency source, for example. It is important to set the scaler record
.FREQ field to be the value of the Frequency_RBV of the pulse generator (the actual frequency) and not the Frequency
field (the requested frequency) since these can differ, particularly at frequencies >1 MHz.

56 Chapter 2. Table of Contents

http://www.aps.anl.gov/bcda/synApps
http://www.aps.anl.gov/bcda/synApps/std/std.html
https://github.com/epics-modules/scaler

measComp

Multi-Channel Scaler (MCS) Support

The USBCTR driver provides multi-channel scaler support very similar to the SIS3820 driver in the synApps mca
module. The support has the following properties:

• The number of counters being used in MCS mode can be selected with the FirstCounter and LastCounter records.
Each can range from 0 to 7; LastCounter must be greater than or equal to FirstCounter. The number of active
counters can thus range from 1 to 8.

• The minimum dwell time, either with internal or external channel advance, is 250 ns times the number of active
counters. For example if only 2 counters are being used, the clock input on Counter 0 and a signal on Counter
1, then the minimum dwell time is 500 ns. If all 8 counters are being used then the minimum dwell time is 2
microseconds.

• Either MCS or waveform records can be used to hold the time series data.

• There is no limitation on the length of the waveform or mca records, only the size of system RAM.

• An external channel advance signal can be used directly by connecting it to the External Clock Input (CLKI)on
the USB-CTR module. The minimum dwell time (period) of this signal is described above.

• An external channel advance can be “prescaled” (frequency divided by N) by connecting it to a counter input. This
counter is assigned to the PrescaleCounter record. The Counter Output of the PrescaleCounter must be connected
to the External Clock Input on the USB-CTR module. I have asked Measurment Computing to consider adding
a prescale register for the CLKI signal in a future firmware version, but I don’t know if this will be done.

• To achieve the shortest dwell times the counter must be read in 16-bit mode rather than 32-bit mode. This is
handled automatically by the driver. If the dwell time is less than 100 microseconds the counters are read in 16-
bit mode, while for longer dwell times they are read in 32-bit mode. There is no possible loss of data when reading
in 16-bit mode because at the maximum count rate of 48 MHz only 4800 counts can occur in 100 microseconds,
which is much less than the 16-bit limit. NOTE: When using external channel advance the Dwell record should
be set to the approximate time between external pulses. This will cause the correct 32-bit/16-bit switch to occur
so that the minimum dwell time can be reached and so the counters don’t overflow 16-bits for longer dwell times.

The following record are defined in measCompMCS.template. This database is loaded once per module.

2.3. Driver for the USB-CTR08 57

measComp

EPICS
record
name

EPICS
record
type

asyn in-
terface

drvInfo
string

Description

(P)(R)SNL_Connectedbi N.A. N.A. This record is 1 (“Connected”) if all PVs have connected in the US-
BCTR_SNL State Notation Language program.

(P)(R)EraseAllbo asynInt32 MCA_ERASEErases the MCS data, setting the arrays and the elapsed times to 0.
(P)(R)EraseStartbo asynInt32 MCA_ERASEErases the MCS data and then starts MCS acquisition by forward

linking to StartAll.
(P)(R)StartAllbo asynInt32 MCA_START_ACQUIREStarts MCS acquisition.
(P)(R)Acquiringbusy N.A. N.A. Busy record is 1 (“Acquiring”) when MCS is acquiring and 0

(“Done”) when done..
(P)(R)StopAllbo asynInt32 MCA_STOP_ACQUIREStops MCS acquisition.
(P)(R)PresetRealao asyn-

Float64
MCA_PRESET_REALPreset real time. If non-zero acquisition will stop after this time.

(P)(R)ElapsedRealai asyn-
Float64

MCA_ELAPSED_REALElapsed real time.

(P)(R)ReadAllbo N.A N.A. Forces a read of all of the array data. This is done by the SNL pro-
gram.

(P)(R)NuseAlllongout asynInt32 MCA_NUM_CHANNELSThe number of time points to acquire.
(P)(R)CurrentChannellongin asynInt32 MCS_CURRENT_POINTThe current time point in the acquisition.
(P)(R)Dwellao asyn-

Float64
MCA_DWELL_TIMEThe dwell time per time point in internal channel advance mode.

(P)(R)ChannelAdvancebo asynInt32 MCA_CH_ADV_SOURCEThe channel advance source. 0=”Internal” uses DWELL record,
1=”External” uses External Clock Input on USB-CTR module.

(P)(R)Prescalebo asynInt32 MCA_PRESCALEThe prescale factor for the external channel advance source. To use
Prescale the external clock must be input to the counter channel se-
lected by PrescaleCounter, and the output of the PrescaleCounter
counter channel must be connected to the External Clock Input. Note
that due to hardware limitations Prescale must be > 1. For no
prescaling the external channel advance source must be connected
directly to the External Clock Input.

(P)(R))MCSCounterNEnable
(N=1-8)

bo asynInt32 N.A. Enable counter N in MCS mode. Choices are “No” (0) and “Yes”
(1).

(P)(R))MCSDIOEnablebo asynInt32 N.A. Enable collecting digital I/O word in MCS mode. Choices are “No”
(0) and “Yes” (1).

(P)(R)PrescaleCountermbbo asynInt32 MCS_PRESCALE_COUNTERThe counter channel to use for prescaling the external channel ad-
vance in MCS mode. 0=”CNTR0” . . . 7=”CNTR7”.

(P)(R)Point0Actionmbbo asynInt32 MCS_POINT0_ACTIONControls how the first time point in the MCS scan is handled. The
USB-CTR always reads the current scaler counts as soon as MCS
acquisition begins, rather than after the first channel advance occurs.
This record selects one of the following 3 modes:

• “Clear” (0) In this mode the scalers are cleared to 0 before
they are read. This means that the counts in first time point
for each counter will be 0.

• “No clear” (1) In this mode the scalers are not cleared before
they are read. This means that there will normally be a large
number of counts in the first time point, since the counters will
have been counting since they were last cleared.

• “Skip” (2) In this mode the first time point will be skipped, i.e.
not read into the mca or waveform records. The first time point
will thus contain the counts after MCS acquisition was started
until the first channel advance signal is received, either inter-
nal or external. This is probably the mode that will be most
useful. However, it does require N+1 channel advance signals
rather than N. This is handled by the driver for internal channel
advance. But for external channel advance the user must en-
sure that N+1 pulses are sent. For example if NUseAll=2000
then 2001 pulses must be sent before acquisition will stop.

(P)(R)TrigModembbo asynInt32 TRIG-
GER_MODE

Controls trigger of the MCS scan. Choices are:
• “Rising edge” (0)
• “Falling edge” (1)
• “High level” (2)
• “Low level” (3)

The trigger can be used to trigger MCS acquisition from an exter-
nal trigger signal. The MCS must be first started with the StartAll
record. Acquisition will start when the specfied trigger condition
is met. The MCS acquisition is always done in triggered mode. If
triggered acquisition is not desired then simply do not connect any
signal to the Trigger Input and set Mode=”Low”. This will cause the
trigger condition to always be satisfied.

(P)(R)MaxChannelslongin asynInt32 MCS_MAX_POINTSThe maximum number of points in MCS arrays. This is determined
by the value of the MAX_POINTS macro parameter when loading
the MCA or waveform records.

(P)(R)Modelmbbi asynInt32 MODEL The model number of the counter module. 0=”USB-CRT08”,
1=”USB-CTR04”.

58 Chapter 2. Table of Contents

measComp

medm screens

The following is the main medm screen for controlling the USB-CTR04/08.

The following is the medm screen for the EPICS scaler record using the USB-CTR04/08.

The following is the medm screen for controlling the MCS mode of the USB-CTR04/08.

2.3.4 Wiring to BCDA BC-020 LEMO Breakout Panels

The following photos show the BCDA BC-020 LEMO breakout panels wired to the USB-CTR08. A BC-020 with
a BC-087 daughter card (left) is used for the 8 counter signals, and a BC-020 with wire-wrapping (right) is used for
digital I/O, timer output, clock I/O, etc. .

Wiring table

Digital I/O and other signals using wire-wrap connections

50-pin ribbon USB-1608GX BC-020 EPICS Function
connector pin screw terminal connector
1 DIO0 J1 Digital I/O bit 0
2 GND J1 shell Ground
3 DIO1 J2 Digital I/O bit 1
4 GND J2 shell Ground
5 DIO2 J3 Digital I/O bit 2
6 GND J3 shell Ground
7 DIO3 J4 Digital I/O bit 3
8 GND J4 shell Ground
9 DIO4 J5 Digital I/O bit 4
10 GND J5 shell Ground
11 DIO5 J6 Digital I/O bit 5
12 GND J6 shell Ground
13 DIO6 J7 Digital I/O bit 6
14 GND J7 shell Ground
15 DIO7 J8 Digital I/O bit 7
16 GND J8 shell Ground
17 TMR0 J9 Pulse generator 0 output
18 GND J9 shell Ground
19 TMR1 J10 Pulse generator 1 output
20 GND J10 shell Ground
21 TMR2 J11 Pulse generator 2 output
22 GND J11 shell Ground
23 TMR3 J12 Pulse generator 3 output
24 GND J12 shell Ground
25 TRIG J13 Trigger input for MCS
26 GND J13 shell Ground
27 CLKI J14 External channel advance input
28 GND J14 shell Ground
29 CLK0 J15 Clock output
30 GND J15 shell Ground
31 +VO J16 +5 volt output
32 GND J16 shell Ground

(continues on next page)

2.3. Driver for the USB-CTR08 59

measComp

Fig. 37: USBCTR.adl

60 Chapter 2. Table of Contents

measComp

Fig. 38: scaler_full.adl

Fig. 39: USBCTR_MCS.adl

2.3. Driver for the USB-CTR08 61

measComp

Fig. 40: USBCTR_MCS_plots.adl

62 Chapter 2. Table of Contents

measComp

Fig. 41: BC-020 LEMO breakout panels with USBCTR-08

Fig. 42: Top view of USBCTR-08 with BC-020 LEMO breakout panels

2.3. Driver for the USB-CTR08 63

measComp

(continued from previous page)

Counter I/O using wire-wrap connections

50-pin ribbon USB-CTR08 BC-020 EPICS Function
connector pin screw terminal connector
1 C0IN J1 Scaler 1 input
2 GND J1 shell Ground
3 C0GT J2 Scaler 1 gate input
4 GND J2 shell Ground
5 C0O J3 Scaler 1 output
6 GND J3 shell Ground
7 C1IN J4 Scaler 2 input
8 GND J4 shell Ground
9 C1GT J5 Scaler 2 gate input
10 GND J5 shell Ground
11 C1O J6 Scaler 2 output
12 GND J6 shell Ground
13 C2IN J7 Scaler 3 input
14 GND J7 shell Ground
15 C2GT J8 Scaler 3 gate input
16 GND J8 shell Ground
17 C2O J9 Scaler 3 output
18 GND J9 shell Ground
19 C3IN J10 Scaler 4 input
20 GND J10 shell Ground
21 C3GT J11 Scaler 4 gate input
22 GND J11 shell Ground
23 C4O J12 Scaler 4 output
24 GND J12 shell Ground
25 C4IN J13 Scaler 5 input
26 GND J14 shell Ground
27 C4GT J14 Scaler 5 gate input
28 GND J14 shell Ground
29 C4O J15 Scaler 5 output
30 GND J15 shell Ground
31 C5IN J16 Scaler 6 input
32 GND J16 shell Ground
33 C5GT J17 Scaler 6 gate input
34 GND J17 shell Ground
35 C5O J18 Scaler 6 output
36 GND J18 shell Ground
37 C6IN J19 Scaler 7 input
38 GND J19 shell Ground
39 C6GT J20 Scaler 7 gate input
40 GND J20 shell Ground
41 C6O J21 Scaler 7 output
42 GND J21 shell Ground
43 C7IN J22 Scaler 8 input
44 GND J22 shell Ground
45 C7GT J23 Scaler 8 gate input
46 GND J23 shell Ground

(continues on next page)

64 Chapter 2. Table of Contents

measComp

(continued from previous page)

47 C7O J24 Scaler 8 output
48 GND J24 shell Ground

In addition to these connections counter 0 output (C0O) was connected to the gate
inputs of counters 1-7 (C1GT - C7GT) at the module screw terminals.
This is cheaper and simpler than using LEMO tees and short cables on the BC-020 module.

2.3.5 Performance measurements

The binary input bits are polled at 100 Hz, and the input records have SCAN=I/O Intr. There is thus a worse-case
latency of 0.01 seconds in detecting a transition on these bits.

If the scaler record is run under the following conditions:

• Counter 0 Output connected to the Gate Input of Counters 1-7

• Pulse generator 0 frequency=32 MHz, connected to Counter 0 input

• Pulse generator 1 frequency=32 MHz, connected to Counter 1 input

• Pulse generator 2 frequency=32 MHz, connected to Counter 2 input

• Pulse generator 3 frequency=32 MHz, connected to Counter 3 input

• Scaler record .FREQ field = 3.2e7

• Scaler record preset time = 1.0 second

• Only scaler channel 1 is preset (.G1=Y, .G2-.G8=N)

After each count cycle .S1=32000000 counts exactly, .S2-.S4=32000000 += 1 count. There is thus no cross-talk with
all channels running at 32 MHz, and the gate signals are working as designed.

If Pulse Generator 2 is changed to 3.2 MHz, .PR2 is set to 1600000, and .G2 is set to Y, then the scaler is stopped by
channel 2 in the software polling routine. In this case it counts for exactly 0.50 seconds. However, if .PR2 is increased
to 1600001 then it counts for 0.51 seconds. This corresponds to the worst case error due to the 100 Hz rate at which
the scaler values are read. Note that all counters are active for exactly 0.51 seconds, so the counts all accurately reflect
this count time. The count time is just slightly longer than requested due to the finite polling interval.

In MCS mode the measured minimum dwell time in both internal and external channel advance mode agrees with the
datasheet, i.e. 250 ns * number of active counters. I was not able to measure any dead time between time bins in MCS
mode. When sending exactly 8000000 pulses at 8 MHz to channel 0 with a 1 ms internal dwell time the total number
of counts in the MCA record was 8000000. This means that no pulses were lost during the 1000 channel advances that
happened during this time.

2.3.6 Restrictions

• The EPICS driver only uses the Totalize mode of the counters. With the scaler record it does a one-shot totalize,
while in the MCS mode it totalizes into time-bins. The USB-CTR08 is also capable of running in 3 other modes.

1. In Period mode it measures the time between the rising or falling edges of successive input pulses.

2. In Pulse Width measurement mode it measures the time between the rising and falling edges of a each
pulse.

3. In Timing Mode it measures the time between an event on the counter input and another event on the counter
gate.

2.3. Driver for the USB-CTR08 65

measComp

None of these modes are currently supported by the EPICS driver, but they could be added in a future release.

• In Totalize mode each counter has many options in how it works: count up/down, gate clears counter, gate
controls counter direction, preset counts where the output signal goes high/low, polarity of the output, etc. These
options are not currently exposed in the EPICS driver.

• The EPICS driver only works in 32-bit counter depth mode. The USB-CTR08 can count with a 64-bit counter
depth. asyn does not currently have support for 64-bit integer data types, so this cannot be supported.

• To work with the scaler record the counter 0 output must be wired to the gate inputs of counters 1-7 as discussed
above.

Suggestions and Comments to:
Mark Rivers : (rivers@cars.uchicago.edu)

66 Chapter 2. Table of Contents

mailto:rivers@cars.uchicago.edu
mailto:rivers@cars.uchicago.edu

	Required Modules
	Table of Contents
	Overview
	Driver for Multi-Function Devices
	Introduction
	Supported models
	E-1608
	E-TC
	TC-32
	USB-1608G and USB-1608GX-2AO
	USB-1808 and USB-1808X
	USB-2408-2AO
	USB-TEMP and USB-TEMP-AI
	USB-1208LS
	E-DIO24
	USB-3100

	Configuration
	Databases
	Overall Device Functions
	Analog I/O Functions
	Temperature Functions
	Digital I/O Functions
	Pulse Generator Functions
	Waveform Digitizer Functions
	Waveform Generator Functions
	Trigger Functions

	Box for USB-CTR08, USB-3104, and USB-1808X
	Box for USB-2408-2AO
	Performance measurements

	Driver for the USB-CTR08
	Introduction
	Configuration
	Databases
	Digital I/O Functions
	Pulse Generator Functions
	Scaler Record Support
	Multi-Channel Scaler (MCS) Support
	medm screens

	Wiring to BCDA BC-020 LEMO Breakout Panels
	Wiring table

	Performance measurements
	Restrictions

